Self-Similar Solutions with Fat Tails for a Coagulation Equation with Diagonal Kernel By

نویسندگان

  • Barbara Niethammer
  • Juan J. L. Velazquez
  • Juan J. L. Velázquez
چکیده

We consider self-similar solutions of Smoluchowski’s coagulation equation with a diagonal kernel of homogeneity γ < 1. We show that there exists a family of second-kind self-similar solutions with power-law behavior x−(1+ρ) as x → ∞ with ρ ∈ (γ, 1). To our knowledge this is the first example of a non-solvable kernel for which the existence of such a family has been established. Résumé Nous considérons des solutions autosimilaires de l’équation de coagulation de Smoluchowski avec un noyau diagonal d’homogénéité γ < 1. Nous prouvons l’existence d’une famille de solutions autosimilaires de deuxiéme type avec comportement en puissance x−(1+ρ), ρ ∈ (γ, 1), à l’infini. A notre connaissance, ceci constitue le premier exemple d’existence d’une telle famille pour un noyau non résoluble.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Self-similar solutions with fat tails for a coagulation equation with nonlocal drift

We investigate the existence of self-similar solutions for a coagulation equation with nonlocal drift. In addition to explicitly given exponentially decaying solutions we establish the existence of self-similar profiles with algebraic decay.

متن کامل

Coarse graining, dynamic renormalization and the kinetic theory of shock clustering

We demonstrate the utility of the equation-free methodology developed by one of the authors (I.G.K) for the study of scalar conservation laws with disordered initial conditions. The numerical scheme is benchmarked on exact solutions in Burgers turbulence corresponding to Lévy process initial data. For these initial data, the kinetics of shock clustering is described by Smoluchowski’s coagulatio...

متن کامل

Self-similar Solutions to a Coagulation Equation with Multiplicative Kernel

Existence of self-similar solutions to the Oort-Hulst-Safronov coagulation equation with multiplicative coagulation kernel is established. These solutions are given by s(t)−τ ψτ (y/s(t)) for (t, y) ∈ (0, T )×(0,∞), where T is some arbitrary positive real number, s(t) = ((3−τ)(T − t))−1/(3−τ) and the parameter τ ranges in a given interval [τc, 3). In addition, the second moment of these self-sim...

متن کامل

Optimal bounds for self-similar solutions to coagulation equations with multiplicative kernel

We consider mass-conserving self-similar solutions of Smoluchowski’s coagulation equation with multiplicative kernel of homogeneity 2λ ∈ (0, 1). We establish rigorously that such solutions exhibit a singular behavior of the form x−(1+2λ) as x → 0. This property had been conjectured, but only weaker results had been available up to now.

متن کامل

Self-similar solutions to a coagulation equation

The existence of self-similar solutions with a finite first moment is established for the Oort-Hulst-Safronov coagulation equation when the coagulation kernel is given by a(y, y∗) = yλ + yλ ∗ for some λ ∈ (0, 1). The corresponding self-similar profiles are compactly supported and have a discontinuity at the edge of their support. MSC 2000: 45K05, 45M05, 82C21

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011